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Property of Rational Functions Related to
Band-Pass Transformation With Application

to Symmetric Filters Design
I. M. Filanovsky, Life Senior Member, IEEE

Abstract— This paper considers the condition when a rational
function F(s) may be represented as the function of the argument
s + (1/s). If this condition is satisfied then F(s) is the ratio of
recursive (symmetric) polynomials. This paper investigates the
network properties of such rational functions and their realiza-
tion. Then the symmetric polynomials are applied for synthesis
of symmetric band-pass filters. Substituting p = s + (1/s) into
symmetric band-pass filter transfer function one obtains its low-
pass generating filter. The slew rate and overshoot of generating
filter step-response is closely connected with the step-response
duration of symmetric band-pass filter. The choice of generating
filter becomes an additional factor of symmetric band-pass filter
design. As the generating filters the paper proposes using Lommel
polynomial filters which have easy control of overshoot and slew
rate. An example of six order symmetric band-pass filter is given.

Index Terms— Bandpass transformation, Lommel polynomials,
network theory, recursive polynomials, symmetric bandpass
filters, symmetric polynomials.

I. INTRODUCTION

RECENTLY, the interest towards classical network syn-
thesis was on the rise again. This is connected with the

development of RF circuits, in particular wide-band ampli-
fiers [1]–[3] and their realization in new technologies. Power
electronics [4], and the biomedical circuits providing the
wavelet type response [5] also revived the interest towards
classical time-domain analysis and synthesis of linear net-
works.

Band-pass filters occupy an important place in radio elec-
tronics from the early stages of its development, and many
problems of their realization for specific requirements were
investigated [6], [7]. The integrated realization of coils and,
especially transformers, re-opened the interest to band-pass
filters and amplifiers as the possibility to integrate passive and
active band-pass filters using these elements [8]–[10]. It is
also worthwhile to notice the attempts to adapt “bandpass-
type” transformation for realization of active filters [11] and to
generalize and extend the band-pass transformation for design
of dual-band filters [12].

The goal of this paper is investigation of the band-pass
filters with symmetric attenuation characteristics. Contrary

Manuscript received May 27, 2016; revised August 16, 2016; accepted
September 19, 2016. Date of current version November 23, 2016. This paper
was recommended by Associate Editor A. Mazzanti.

The author is with the University of Alberta, Edmonton, AB T6G 2R3,
Canada.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSI.2016.2612182

to [13] where the symmetry is achieved by modification
of traditional series and parallel resonators, i.e. at the final
stage of realization, here the problem is concentrated on the
properties of the band-pass transfer functions with symmetric
amplitude-frequency responses (called for simplicity, in the
paper title, as symmetric filters).

It worthwhile to mention that some microwave applications
require band-pass filters with asymmetric characteristics. The
methods and specifics of their microwave-based realization can
be found in [[14], and references within]. An approach using
fractional order transfer functions can be found in [15]. This
work is using classical passive and active topologies but is
limited by the filters based on second-order prototypes even
though the higher order asymmetrical-slope band-pass filters
may be realized by cascading.

The band-pass transformation is widely used in circuit
theory and many properties of transfer functions subjected to
this transformation are well known [16]–[19]. However, the
theorem formulated below, which is closely related to this
transformation, was practically inaccessible, the proof was too
subtle and succinct [20], and required the knowledge of tran-
scendental functions (see also Appendix C). In addition, that
proof did not operate directly with recursive (or symmetric)
polynomials; and, as a result, was not supported by any
network applications. These deficiencies are corrected here.
An elementary proof which has not been previously published,
as far as the author is aware, is given and became the basis
for network applications: it is used to construct the transfer
function of symmetric band-pass filters. Special attention is
paid to the step-response of these filters keeping in mind the
applications described in [21].

The paper is organized as follows. Section II formulates the
theorem. Section III gives the proof. Section IV describes some
application of this theorem in the general network synthesis
and filters. Section V reviews the known results for simple
filters with symmetric amplitude-frequency responses, and
introduces the idea of low-pass generating filter. The step-
response of the generating filter becomes reflected in the step-
response of band-pass filter. Section VI describes a higher
order filter and the result of using Lommel polynomial in its
generating filter. Section VII discusses the results. Appendix
A provides the formulas useful for operations with symmetric
polynomials and algebraic functions generating such polyno-
mials. Appendix B provides the basic knowledge on Lommel
polynomials. Appendix C provides the proof of the theorem
using Chebyshev polynomials.
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II. THEOREM

If F(s) is a rational function of s, and F(s) = F(1/s) for
all s (except of singularities of F(s)), then F(s) is the rational
function of s + (1/s).

III. PROOF

Assume that

F(s) = sk(a0sn + a1sn−1 + . . .+ an)

sl(b0sm + b1sm−1 + . . .+ bm)
(1)

where a0, b0, . . . an , bn are non-zero. Using the theorem
condition one obtains that

s2(l−k)+(m−n)(ansn + an−1sn−1 + . . .+ a0)

bmsm + bm−1sm−1 + . . .+ b0

= a0sn + a1sn−1 + . . .+ an

b0sm + b1sm−1 + . . .+ bm
. (2)

The denominators of left and right parts have equal exponents,
hence, the numerators should be of equal exponents as well.
One can conclude that

m − n = 2(k − l) (3)

and m and n are even or odd simultaneously. Then, using (2)
and (3), one can write that

Pm(s) = bmsm + bm−1sm−1 + . . .+ b0

= b0sm + b1sm−1 + . . .+ bm (4)

and

Pn(s) = ansn + an−1sn−1 + . . .+ a0

= a0sn + a1sn−1 + . . .+ an. (5)

Comparing coefficients in (4) and (5), one obtains that a0 =
an , a1 = an−1, . . . , b0 = bm , b1 = bm−1, . . ., i.e., Pm(s) and
Pn(s) are recursive (or symmetric) polynomials.

Let us now consider, for example, Pn(s) and assume that n
is even, i.e. n = 2q . One can rewrite (5) in this case as

P2q(s) = sq

⎡
⎢⎢⎣

an

(
sq + 1

sq

)
+ an−1

(
sq−1 + 1

sq−1

)
+

. . .+ aq+1

(
s + 1

s

)
+ aq

⎤
⎥⎥⎦ .

(6)

Now, one denotes s + 1
s = p, and, using the binomial

formula [22] one calculates

p2 = s2 + 2 + 1

s2 (7)

p3 = s3 + 3s + 3

s
+ 1

s3 (8)

pq = sq + qsq−2 + q(q − 1)

1 · 2
sq−4 + . . .+ q(q − 1)

1 · 2

1

sq−4

+ q
1

sq−2 + 1

sq
=

(
sq + 1

sq

)

+ q

(
sq−2 + 1

sq−2

)
+ . . . (9)

From this set of equations, one finds successively

s + 1

s
= p (10)

s2 + 1

s2 = p2 − 2 (11)

s3 + 1

s3 = p3 − 3 p (12)

and so on. Hence
P2q (s) = sqφq(p) (13)

where φq(p) is a polynomial with the exponent of q .
Let us consider now the case of n = 2q + 1. Then

P2q+1(s) = a0s2q+1 + a1s2q + . . .+ a2qs + a2q+1. (14)

This polynomial is symmetric, hence

a0 = a2q+1, a1 = a2q , a2 = a2q−1, . . . (15)

Then P2q+1(s) can be rewritten as

P2q+1(s) = a0(s
2q+1 + 1)+ a1(s

2q + s)

+ a2(s
2q−1 + s2)+ . . .+ aq(s

q+1 + sq )

= a0(s
2q+1 + 1)+ a1s(s2q−1 + 1)

+ a2s2(s2q−3 + 1)+ . . .+ aqsq(s + 1). (16)

It is easy to verify that

s2m+1 + 1 = (s + 1)(s2m − s2m−1 + s2m−2

− . . .+ s2 − s + 1). (17)

Then the terms in (16) can be rewritten as

a0(s
2q+1 + 1) = a0(s + 1)(s2q − s2q−1 + . . .+ s2 − s + 1)

a1s(s2q−1 + 1) = a1s(s + 1)(s2q−2 − s2q−3 + . . .− s + 1)

= a1(s + 1)(s2q−1 − s2q−2 + . . .− s2 + s)

a2s2(s2q−3 + 1) = a2s2(s + 1)(s2q−4 − . . .+ 1)

= a2(s + 1)(s2q−2 − . . .+ s2)

aqsq(s + 1) = aq(s + 1)sq . (18)

Summing these terms, one obtains that

P2q+1(s) = (s + 1)Q(s) (19)

where Q(s) is the polynomial which is the sum of the
following polynomials:

a0(s
2q − s2q−1 + s2q−2 − . . .+ s2 − s + 1

a1(s
2q−1 − s2q−2 + . . .− s2 + s)

a2(s
2q−2 − . . .+ s2)

aqsq . (20)

But one can see that all polynomials in (20) are symmetric.
Hence, their sum is also a symmetric polynomial of even
exponent n = 2q , and one concludes that the summation result
will be

P2q+1(s) = (s + 1)sqψq (p) (21)

where ψq(p) is a polynomial with the exponent of q .
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Fig. 1. Two-step transfer function realization.

Now one has two cases.
a) m = 2r and n = 2q are both even. Then, using (3) one

obtains

F(s) = sk+qφq(p)

sl+rψr (p)
= φq(p)

ψr (p)
sk−l+q−r = φq(p)

ψr (p)
. (22)

b) m = 2r + 1 and n = 2q + 1 are both odd. Then

F(s) = (s + 1)sk+qφq(p)

(s + 1)sl+rψr (p)
= φq(p)

ψr (p)
sk−l+q−r = φq(p)

ψr (p)
.

(23)
The theorem is proven.

IV. APPLICATION TO NETWORK SYNTHESIS

Let us consider the function

F(s) = s4 + 5s2 + 1

s4 + 4s3 + 7s2 + 4s + 1
. (24)

It is easy to verify that this function satisfies the theorem
condition.

Let be required that (24) is realized as a network transfer
function and the sign obtained in realization is not important.
Dividing the numerator and denominator of (24) by s2 and
using the results (10) – (12) one can represent (24) as

F(p) = p2 + 3

p2 + 4 p + 5
(25)

where p = s + (1/s). Now, one can consider realization
of (25) as a transfer function for the variable p. If one decides
to realize (25) using an ideal operational amplifier, one can
introduce

Z1(p) = p2 + 4 p + 5

p
= p + 4 + 5

p
(26)

and

Z2(p) = p2 + 3

p
= p + 3

p
. (27)

The realization using Z1(p), Z2(p) and, say, an ideal opera-
tional amplifier is shown in Fig. 1 a.

Finally, considering that p = s+(1/s) and 1/p = s/(s2+1)
each inductor in the network of Fig. 1a is substituted by
the series connection of inductor and capacitor, and each
capacitor is substituted by the parallel connection of inductor
and capacitor. This final realization is shown in Fig. 1b. Hence,
the transition to the p-variable, in case if the transfer function

Fig. 2. Positive realness verification.

satisfies the theorem condition, may be considered as an inter-
mediate step simplifying the realization. The reader should
not worry about physical implementation of this example; in
network theory we are dealing with ideal elements.

The transition to the p-variable may be useful in case of
one-port realization as well. If it be required that (24) is
realized as the input impedance, and the realization should
be passive, the answer will be negative. The transformation
p = s+(1/s) does not change the property of positive realness
of the transformed function [18]. Then, if

Zin(p) = p2 + 3

p2 + 4 p + 5
. (28)

then (Fig. 2)

Yin(p) = p2 + 4 p + 5

p2 + 3
= 4 p

p2 + 3
+ p2 + 5

p2 + 3
. (29)

But it is easy to see that for p = j� the second term of (29)
is the real part of Yin( j�), i.e.,

ReYin( j�) = �2 − 5

�2 − 3
(30)

and this real part is negative for 3 < �2 < 5. Hence,
the second term of (29) can not be realized as an input
admittance of a passive one-port, and (28) (and, hence (24))
is not realizable as a passive one-port either.

V. SIMPLE BAND-PASS FILTERS WITH SYMMETRIC

AMPLITUDE-FREQUENCY RESPONSE

Let us consider a simple example: symmetric band-pass
filters with fourth order polynomial in the transfer function
denominator

T (s) = K s2

a4s4 + a1s3 + a2s2 + a1s + a0
. (31)

One well-known example of symmetric 4th order polynomial is
the fourth order Butterworth polynomial. The band-pass filter
using this polynomial has the transfers function

T1(s) = K1s2

s4 + 2.6131s3 + 3.4142s2 + 2.6131s + 1
. (32)

Dividing the numerator and denominator of (32) by s2 and
using the results (10) –(12) one can represent (32) as

T1

(
s + 1

s

)
= G1(p) = K1

p2 + 2.6131 p + 1.4142
. (33)

The function G1(p) (33) will be called “generating filter” for
the transfer function T1(s). The substitution p = s + (1/s)
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in (33) will return us back to (32). From the other side, G1(p)
is a low-pass filter transfer function (of variable p), and the
step response parameters of G1(p), (especially slew-rate and
overshoot) define the step-response duration for T1(s).

If one considers

G2(p) = K2

p2 + 1.4142 p + 1
(34)

and applies the transformation p = s+(1/s) to this generating
filter one obtains

T2(s) = K2s2

s4 + 1.4142s3 + 3s2 + 1.4142s + 1
. (35)

This band-pass filter is known as “double-tuned inter-stage
coupling network”. The amplitude-frequency response of this
filter is well investigated [19], [23], and we used it here to
demonstrate that application of band-pass transformation to a
symmetric polynomial results in a symmetric polynomial of
higher order.

We can also obtain a symmetric forth order band-pass filter
if we multiply the transfer functions of two symmetric band-
pass filters of second order. For example, one obtains

T3(s) = K3s2

(s2 + 1.4142s + 1)2

= K3s2

s4 + 2.8284s3 + 4s2 + 2.8284s + 1
. (36)

This band-pass filter is known as “network with identical
cascaded resonators” [23], [24]. The generating filter for T3(s)
is given by

G3(p) = K3

p2 + 2.8284 p + 2
. (37)

Let us start to compare these three filters. They are called
here “Butterworth-derived” just because in this part we oper-
ated with Butterworth polynomials; the general approach is
considered in the next part. Fig. 3 shows their amplitude and
phase frequency responses. Fig. 3a shows that T1(s) is the
most narrow-banded filter. T2(s) and T3(s) are more wide-
banded filters (this is why these configurations are considered
in wide-band selective amplifiers), but in a different manner: at
the point of ω = 1 the phase characteristic of T2(s) is steeper
than that of T1(s) and the phase characteristic of T3(s) is less
steep than that of T1(s).

The steepness of phase frequency characteristic at the point
ω = 1 may be connected with the duration of the filter step
response. The step responses of T1(s), T2(s) and T3(s) are
shown in Fig. 4. Indeed, the step transient response of T2(s)
is the longest one.

Additional design information is obtained considering
the step responses of generating filters G1(p), G2(p)
and G3(p). These are shown in Fig. 5. Comparing the graphs
of Fig. 4 and Fig. 5 one can conclude that the generating
function having the highest slew rate at the beginning of the
response, and, at the same time, not having any overshoot
will provide the shortest duration for the step response of the
corresponding bandpass filter.

The realization procedure of the bandpass filters considered
in this part is common to all of them. The first step is realiza-
tion of the corresponding generation filter. If, for example, one

Fig. 3. Frequency characteristics of the derived filters.

Fig. 4. Comparison of filters step responses.

considers realization of G1(p) with K1 = 1 (in the previous
consideration this gain constant was chosen different for easy
comparison with the characteristics of other filters) then a
network with this transfer function can be easily found. It is
shown in Fig. 6a. In this network R2 = 1, R1 = 0.4142 and
the inductor and capacitor can be found from the system of
two equations {

LC = 1

L + C = 2.6131.
(38)
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Fig. 5. Step responses of generating functions.

Fig. 6. Realization of Butterworth-derived filters.

Fig. 7. Idealized models of electromagnetic energy transducers.

These equations have two solutions: L = 2.1474, C = 0.4657,
and L = 0.4657, C = 2.1474.

Finally, the inductor in the network of Fig. 6a is substituted
by series connection of the inductor and capacitor, and the
capacitor is substituted by parallel connection of the inductor
and capacitor. This final realization is shown in Fig. 6b. Notice
that this realization includes the source impedance and the load
(even though they are not equal; using equal loads at both ends
is possible but it would reduce the filter gain).

The developed approach not only unite the previously
known symmetric bandpass filters but may be also connected
with design of electromagnetic energy transducers [25], [26]
recently became important in energy harvesters.

If one introduces an ideal transformer with 1:1 turn ratio
[as shown in Fig. 7a] the transfer function of this network

will be the same as that of Fig. 6b. One can do a step further
and use the transformer with N:1 turn ratio [Fig. 7b]. This step,
of course, requires the change of impedance level of elements
in the secondary.

But the network shown in Fig. 7b is one of equivalent net-
works of the electromagnetic energy transducers with strong
coupling. Hence, the proposed approach allows to introduce
the approximation problem at the early stages of transducer
design: T1(s) should be used when the energy is concen-
trated in the narrow band, T2(s) provides larger bandwidth
(and longer transient response, and T3(s) is an intermediate
compromise solution. Then, Fig. 6a elements are obtained for
R2 = 1, and R1 = 0.4142. Using other resistors (this is the
advantage of the synthesis!) and varying N may help to better
match the network model with the transducer circuit using real
elements.

VI. HIGHER ORDER BANDPASS FILTERS WITH

SYMMETRIC AMPLITUDE-FREQUENCY RESPONSE

As one can see, the proposed theorem allows one to simplify
the synthesis of bandpass polynomial filters at the condition
that their denominators are recursive (symmetric) polynomials:
introducing the inverse transformation of variables reduces
by two times the order of the denominator polynomial. The
Butterworth polynomials are not the only ones which have this
property.

The simplest way to obtain the recursive polynomials is to
consider the polynomial including also terms with negative
exponents

Pn(s) = 1

sn
Qn(s)+ sn Qn

(
1

s

)
(39)

where Qn(s) is an arbitrary polynomial of the degree n.
Indeed, one can see that Pn(s) = Pn(1/s), and, hence, Pn(s)
is a recursive polynomial

Pn(s) =

⎡
⎢⎢⎣

(
sn + 1

sn

)
+ an−1

(
sn−1 + 1

sn−1

)
+

. . .+ a1

(
s + 1

s

)
+ a0

⎤
⎥⎥⎦ . (40)

Then one can see that

T (s) = K

Pn(s)
(41)

may be immediately used as the transfer function of a symmet-
ric bandpass filter at the condition that the polynomial Qn(s)
provides physical realization of (41).

But in addition to physical realizability there are require-
ments to the filter bandwidth and the transient response
duration. If we use the results (10) – (12) (the missing terms
can be found or developing the sequence (10) – (12) further
or using the formulas given in Appendix A) then

Hn(s) = a0

Pn(p)
(42)

is a generating filter for the transfer function (41). In accor-
dance with observations made in the previous part the step-
transient response of this generating function should be fast yet
without overshoot (or with a very small overshoot). Hn(s) is a
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Fig. 8. Step-transient responses for third order Lommel polynomial filters.

low-pass filter transfer function. The problem of step-transient
response without overshoot in wideband amplifiers/filters
is well known [28], [29], see also bibliography in both
sources].

We propose to use for the considered task, as the denom-
inators of generating filters, Lommel polynomials [30] (see
also Appendix B): using Lommel polynomial provides an
easy control of overshoot in the step response. For example,
the second order generating filter with second order Lommel
polynomial in the denominator will be

HL2(p) = 4μ(μ+ 1)

p2 + 2νp + 4μ(μ+ 1)
. (43)

One can see that it is easy to find the values of μ and ν which
are used in (33), (34) and (37).

As it was shown in [30], the Lommel polynomials are
centered around Bessel polynomials, and for μ = 1/2 and
ν = 3/2 both groups of polynomials are coinciding. But
it is well known [23] that Bessel polynomial filters are
having the step response without overshoot. Hence, Bessel
polynomial filters may be considered as a good initial choice
for generating filters. Using different values of μ and ν one can
modify the generating filter step transient response, and hence,
find the compromise between the bandpass and transient
duration for the bandpass filter derived from this generating
filter.

As an example, consider the synthesis of bandpass filter
with the six order symmetric polynomial in the denominator.
In accordance with the proposed approach, one starts design
considering the third-order generating filter

HL3(p) = a0

p3 + a2 p2 + a1 p + a0
. (44)

Here, a0 = 8μ(μ + 1)(μ + 2), a1 = 4ν(ν + 1). and
a2 = 4(μ+ 1).

Fig. 8 shows the step transient responses for ν = 3/2
and three different values of μ (the corresponding subscript
L3 = 0, +, −). One can see that increasing μ one obtains
step transient responses with higher speed but with increasing
overshoot.

Fig. 9. Step transient responses of symmetric filters.

Fig. 10. Amplitude-frequency responses of the bandpass filters.

The transfer functions of the symmetric filters are obtained
substituting p = s + (1/s) into (44). One obtains

Ti (s) = a0s3
[

s6 + a2s5 + (3 + a1)s4 + (2a2 + a0)s3

+(3 + a1)s2 + a2s + 1

] (45)

where i = 0, +, −. The step transient responses of the filters
Ti (s) are shown in Fig. 9. One can see, indeed, that overshoot
in the step response of generating filter results in a longer
transient response of the filter itself.

It is possible to show that the slew rates of the generating
filter and the symmetric filter for small values of time variable
are coinciding. This results in a faster initial response (with a
larger initial amplitude, of course) of the filter derived from
the generation filter with faster step response.

Fig. 10 demonstrates amplitude frequency responses of the
obtained filters. One can see that the bandwidth increase is
realized in the similar way as in Fig. 3(a), by making higher
the “shoulders” of the response.

The realization of the chosen filter can be done in two
steps: first, we realize a generating low-pass filter, and then,
using low-pass to bandpass transformation do substitution of
reactance elements be resonant circuits. If, for example, we
choose μ = 0.5 and ν = 3/2, the generating filter transfer
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Fig. 11. Realization of 6th-order symmetric filter.

function becomes

H0(p) = 15

p3 + 6 p2 + 15 p + 15
. (46)

It is easy to verify that the network shown in Fig. 11a realizes
the transfer function

H0(p) = 7.5

p3 + 6 p2 + 15 p + 15
(47)

Doing the substitution of reactance elements in accordance
with low-pass to bandpass transformation one arrives to the
network shown in Fig. 11b which realizes the transfer function

T0(s) = 7.5s3

s6 + 6s5 + 18s4 + 27s3 + 18s2 + 6s + 1
. (48)

Realization of higher order low-pass generating filters is a
difficult task. A particular case is known as the design of triple
resonance inter-stage networks [31], [32]. It is a special not
well-investigated problem and is not considered here.

VII. DISCUSSION AND CONCLUSION

The investigation of condition when a rational function F(s)
becomes the function of the argument p = s + (1/s) and the
proof of corresponding theorem resulted in consideration of
transfer functions which are ratios of recursive (symmetric)
polynomials and symmetric bandpass filters in particular.

Substituting p = s + (1/s) in the transfer functions of
symmetric bandpass filters gives their low-pass generating
filters. The step-response of generating filter is influencing
the step-response of bandpass filter and may be used as
an additional factor for the choice of the bandpass transfer
function. The known examples of symmetric bandpass filters
are different in their generating filter functions.

Realization of symmetric bandpass filter should start from
realization of generating filter. Different solutions which nor-
mally obtained at this stage allow to choose more favorable
result for transition to electronic circuit.

The theorem which establishes the condition when any
analytic function of s may be represented as the function
of p = s + (1/s) [20] was not considered here; we did not
find any interesting network applications; perhaps an interested
reader will fill this gap.

In accordance with the long-time request of [33], a partial
investigation of the theorem implications on the network syn-
thesis and on analog filter design was provided. The technique

proposed as the result of this theorem proof combines time
domain approximation (the generating filter is chosen on the
basis of time-domain response) with frequency-domain low-
pass to bandpass transformation.

A possible extension of the theorem on design of digital
filters [34] and, possibly, two-dimensional digital filters may
be a matter of the future work.

APPENDIX A

Calculating sk + (1/sk) does not require the sequence of
steps described in (7) – (12). Two formulas are useful [35].
The first one is

1

k

(
sk + 1

sk

)
= 1

k
pk − (k − 2)!

1!(k − 2)! pk−2 + (k − 3)!
2!(k − 4)! pk−4

− (k − 4)!
3!(k − 6)! pk−6 + . . . (A.1)

The terms on the right side of (A.1) can be obtained by the
common procedure. The general expression for the term is

(−1)m(k − m − 1)!
m!(k − 2m)! pk−2m (A.2)

where m = 0, 1, 2, . . . up to the maximum value of m when
the exponent k − 2m is still positive (i.e. m is an integer and
m ≤ k

2 ). Hence, (A.1) can be also written as the sum

1

k

(
sk + 1

sk

)
=

p∑
m=0

(−1)m(k − m − 1)!
m!(k − 2m)! pk−2m (A.3)

where m is a maximal integer for which m ≤ (k/2).

APPENDIX B

The Lommel polynomials [30, 36, 37], PnLo(s, μ, ν), of
complex variable s and two real value parameters μ and ν,
are given by the following expressions:

P1Lo(s, μ, ν) = 2μ+ s (B.1)

P2Lo(s, μ, ν) = 4μ(μ+ 1)+ 2νs + s2 (B.2)

P3Lo(s, μ, ν) = 8μ(μ+ 1)(μ+ 2)+ 4ν(ν + 1)s

+ 4(μ+ 1)s2 + s3 (B.3)

P4Lo(s, μ, ν) = 16μ(μ+ 1)(μ+ 2)(μ+ 3)

+ 8ν(ν + 1)(ν + 2)s + 12(μ+ 1)(μ+ 2)s2

+ 4(ν + 1)s3 + s4. (B.4)

If in (B.1) – (B.4) one takes μ = 1/2 and ν = 3/2 then
one finds that

PnLo(s, 1/2, 3/2) = PnBe(s) (B.5)

i.e. Lommel polynomials turn into Bessel polynomials,
PnBe(s), in the form as they are used in filter design [36].
Indeed, doing calculations one obtains

P1Lo(s, 1/2, 3/2) = 1 + s = P1Be(s) (B.6)

P2Lo(s, 1/2, 3/2) = 3 + 3s + s2 = P2Be(s) (B.7)

P3Lo(s, 1/2, 3/2) = 15 + 15s + 6s2 + s3 = P3Be(s) (B.8)

P4Lo(s, 1/2, 3/2) = 105 + 105s + 45s2

+ 10s3 + s4 = P4Be(s). (B.9)
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APPENDIX C

A proof requiring the knowledge of transcendent functions
may be represented as following [20].

Let F(s) = M(s)/N(s), where M(s) and N(s) are polyno-
mials, and F(s) = F(1/s). Then

F(s) = M(s)

N(s)
= M(1/s)

N(1/s)
= M(s) + M(1/s)

N(s) + N(1/s)
. (C.1)

Write p = (1/2)[s + (1/s)], and s = e jθ (where θ may be
complex). Then p = cos θ and

sk + (1/sk) = 2 cos kθ = 2Tk(p), k = 0, 1, 2, . . . (C.2)

where Tk(p) is a Chebyshev polynomial [37]. It follows
at once that M(s) + M(1/s) and N(s) + N(1/s) are both
polynomials in p and hence that F(s) in rational in p.
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